Exportar este item: EndNote BibTex

Use este identificador para citar ou linkar para este item: http://www.bdtd.ueg.br/handle/tede/730
Tipo do documento: Dissertação
Título: Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão
Título(s) alternativo(s): Artificial neural networks in the estimation of the storage time of bean grains
Autor: Farias, Hiago Felipe Lopes de 
Primeiro orientador: Devilla, Ivano Alessandro
Primeiro membro da banca: Devilla, Ivano Alessandro
Segundo membro da banca: Melo, Francisco Ramos de
Terceiro membro da banca: Resende, Osvaldo
Resumo: O feijão é uma cultura amplamente cultivada no Brasil e no mundo. No período da armazenagem dos grãos, ocorre a deterioração do produto, que é gradativa, irreversível e acumulativa. As Redes Neurais Artificiais (RNAs) têm sido utilizadas numa larga gama de aplicações, tais como: classificação padrão, padrão de reconhecimento, otimização, previsão e controle automático. Em alguns casos, as RNAs têm apresentado desempenho superior aos modelos de regressão. Em face ao exposto, objetivou-se com este trabalho avaliar o desempenho das redes neurais artificiais na predição do tempo de armazenamento dos grãos de feijão em função da cor, dureza do tegumento e de diferentes temperaturas. Os grãos foram produzidos e armazenados pela Embrapa Arroz e Feijão, localizada no município de Santo Antônio de Goiás, safra 2013/2014. Foram armazenados 5 grupos de cultivares de feijão carioca com teor de água de 13% b.u. no ano de 2014, as amostras foram armazenadas em câmara tipo Biochemical Oxygen Demand (BOD), com temperaturas (15, 21 e 37 °C). Amostras de grãos foram retiradas aos (36, 72, 108, 144 e 180) dias de armazenamento e foram feitas avaliações de coloração e dureza do tegumento dos grãos. A primeira avaliação foi realizada com os grãos recém-colhidos no ano de 2014, identificados como amostras controle. Os dados foram normalizados entre -1 a 1, as redes treinadas foram do tipo Multilayer Perceptron (MLP), após o treinamento foi selecionada a rede que apresentou melhor performance para solução do problema. A melhor RNA teve um índice de acerto de 83,0% com os dados de treinamento e 91,2% com dados de validação, apresentou correlação superior a 0,900 para treinamento, validação e teste. Nas condições em que foi desenvolvido este trabalho pode-se concluir que as RNAs podem ser utilizadas para estimar os dias de armazenamento em função da cor, dureza e temperatura.
Abstract: Bean is a widely cultivated crop in Brazil and the world. In the period of storage of grains, deterioration of the product occurs, which is gradual, irreversible and cumulative. Artificial Neural Networks (ANNs) have been used in a wide range of applications, such as: standard classification, recognition pattern, optimization, prediction and automatic control. In some cases, ANNs have performed better than the regression models. In the light of the above, this work aimed to evaluate the performance of artificial neural networks in predicting the storage time of bean grains as a function of color, tegument hardness and different temperatures. The grains were produced and stored by Embrapa Rice e Beans, located in the municipality of Santo Antônio de Goiás, harvest 2013/2014. Five groups of carioca bean cultivars with water content of 13% b.u. in the year 2014, the samples were stored in a Biochemical Oxygen Demand (BOD) type chamber, at temperatures (15, 21 and 37 ° C). Grain samples were collected at (36, 72, 108, 144 and 180) days of storage and staining and hardness evaluations of the tegument of the grains. The first evaluation was performed with the grains freshly harvested in the year 2014, identified as control samples. Data were normalized between -1 to 1, the trained networks were of the Multilayer Perceptron (MLP) type, after the training was selected the network that presented better performance to solve the problem. The best RNA had a success rate of 83.0% with training data and 91.2% with validation data, presented a correlation higher than 0.900 for training, validation and testing. Under the conditions in which this work was developed it can be concluded that RNAs can be used to estimate storage days as a function of color, hardness and temperature.
Palavras-chave: Escurecimento do feijão
Dureza do feijão
RNA
Multilayer perceptron
Feijão
Dimming
Hardness
ANN
Multilayer perceptron
Armazenamento
Área(s) do CNPq: CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
Idioma: por
País: Brasil
Instituição: Universidade Estadual de Goiás
Sigla da instituição: UEG
Departamento: UEG ::Coordenação de Mestrado em Engenharia Agrícola
Programa: Programa de Pós-Graduação Stricto sensu em Engenharia Agrícola
Citação: FARIAS, H. F. L. Redes neurais artificiais na predição do tempo de armazenamento de grãos de feijão. 2018. 65 f. Dissertação (Mestrado em Engenharia Agrícola) - Câmpus Central - Sede: Anápolis - CET, Universidade Estadual de Goiás, Anápolis-GO.
Tipo de acesso: Acesso Aberto
URI: http://www.bdtd.ueg.br/handle/tede/730
Data de defesa: 28-Jun-2018
Aparece nas coleções:Mestrado em Engenharia Agrícola

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
REDES NEURAIS ARTIFICIAIS NA ESTIMATIVA DO TEMPO DE ARMAZENAMENTO DE GRÃOS DE FEIJÃO.pdfDissertação_Mestrado em Engenharia Agrícola1,66 MBAdobe PDFBaixar/Abrir Pré-Visualizar


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.